Online Manufacturer for L6 Tool Steel | 1.2714 | 55NiCrMoV7 | SKT4 | BH224/5 Wholesale to United States

Online Manufacturer for
 L6 Tool Steel | 1.2714 | 55NiCrMoV7 | SKT4 | BH224/5 Wholesale to United States

Short Description:

In ASTM A681 standard, L6 steel grade is in L-type for special purpose tool steels. AISI L6 tool steel is in the general class of alloy, oil-hardening tool steel that is characterized by good toughness. ASTM L6 tool steel is suitable for use as tools, dies, and machine parts, which require a good combination of hardness and toughness. Due to its lower carbon content and relatively high nickel content, L6 tool steel has slightly better shock-resistance than more highly alloyed types and shoul...


  • Length: 3-5.8mm or Customization
  • Surface: black, peeled, or rough turned
  • Heat treatment: air-cooling, normalized, annealed, Q&T
  • Smelting process: EAF+LF+VD
  • Product Detail

    Product Tags

    We are proud of the high customer satisfaction and wide acceptance due to our persistent pursuit of high quality both on product and service for Online Manufacturer for L6 Tool Steel | 1.2714 | 55NiCrMoV7 | SKT4 | BH224/5 Wholesale to United States, Create Values,Serving Customer!" is the aim we pursue. We sincerely hope that all customers will establish long term and mutually beneficial cooperation with us.If you wish to get more details about our company, Please contact with us now.


    In ASTM A681 standard, L6 steel grade is in L-type for special purpose tool steels. AISI L6 tool steel
    is in the general class of alloy, oil-hardening tool steel that is
    characterized by good toughness. ASTM L6 tool steel is suitable for use
    as tools, dies, and machine parts, which require a good combination of
    hardness and toughness.

    Due to its lower carbon content and
    relatively high nickel content, L6 tool steel has slightly better
    shock-resistance than more highly alloyed types and should be used where
    some wear-resistance can be sacrificed for increased toughness.

    1. Relevant Steel Specification of L6 Tool Steel

    Country USA German Japan British
    Standard ASTM A681 DIN EN ISO 4957 JIS G4404 BS 4659
    Grades L6/T61206 1.2714/55NiCrMoV7 SKT4 BH224/5

    2. AISI L6 Steel Chemical Composition and Steel Equivalents

    ASTM A681 C Mn P S Si Cr V Mo Ni
    L6/T61206 0.65 0.75 0.25 0.80 0.03 0.03 0.10 0.50 0.60 1.20 . . . . . . . . . 0.50 1.25 2.00
    DIN ISO 4957 C Mn P S Si Cr V Mo Ni
    1.2714/55NiCrMoV7 0.50 0.60 0.60 0.90 0.03 0.02 0.10 0.40 0.80 1.20 0.05 0.15 0.35 0.55 1.50 1.80
    JIS G4404 C Mn P S Si Cr V Mo Ni
    SKT4 0.50 0.60 0.60 0.90 0.03 0.02 0.10 0.40 0.80 1.20 0.05 0.15 0.35 0.55 1.50 1.80
    BS 4659 C Mn P S Si Cr V Mo Ni
    BH224/5 0.49 0.57 0.70 1.00 0.03 0.025 . . . 0.35 0.70 1.10 . . . . . . 0.25 0.40 1.25 1.80

    3. ASTM L6 Tool Steel Mechanical Properties

    Steel L6 Physical Properties

    • Modulus of elasticity [103 x N/mm2]: 215

    • Density [g/cm3]: 7.84

    • Thermal conductivity [W/m.K]: 36.0

    • Electric resistivity [Ohm mm2/m]: 0.30

    • Specific heat capacity[J/g.K]: 0.46

    Mechanical Properties of L6 Steels

    Properties Metric Imperial
    Poisson’s ratio 0.27- 0.30 0.27- 0.30
    Elastic modulus 190-210 GPa 27557-30457 ksi

    4. Forging of L6 Tool Steel

    Forge at 1079°C (1975 F) down to 871°C (1600 F). Do not forge below 843°C (1550 F).

    5. AISI L6 Tool Steel Heat Treatment

    Hardening

    Preheating:
    Heat steel L6 at a rate not exceeding 204°C (400°F) per hour (222°C per
    hour) to 621-677°C (1150-1250°F) and equalize. Soak for 30 minutes for
    the first inch (25.4 mm) of thickness, plus 15 minutes for each
    additional inch (25.4 mm).

    Quenching

    Quench L6 tool steel in oil to 66-51°C (150-125°F).

    Tempering

    Temper
    L6 steels immediately after quenching. Hold at temperature for 1 hour
    per inch (25.4 mm) of thickness when tempering at 204°C (400°F), 4 hours
    minimum, then air cool to ambient temperature.
    However, where increased toughness is desired, at a sacrifice of some hardness, higher tempering temperatures are often used.

    AISI L6 steel does not become brittle, as many other die steels do, when tempered in the range of 232°C to 426°C (450 to 800°F).

    To
    minimize the possibility of cracking, the steel should be tempered
    immediately after hardening and should be heated slowly to the desired
    tempering temperature.

    Annealing

    Annealing of steel L6 must be performed after hot working and before re-hardening.

    Heat
    to 760°C (1400°F) and hold one hour per inch of maximum thickness. Then
    cool slowly with the furnace at a rate not exceeding 28°C per hour(50°F
    per hour) to 538°C (1000°F). Continue cooling to ambient temperature in
    the furnace or in air.

    For improved machinability, hold at 760°C
    (1400°F) for 1 hour per inch (25.4mm) of maximum thickness; 2 hours
    minimum. Then cool slowly with the furnace cool from 677°C (1250°F) to
    760°C (1400°F), hold for 8 hours, then air cool to ambient temperature.

    Because of its air-hardening ability, steel L6 should not be normalized.

    6. Machinability of Steel L6

    Machinability
    of tool steel L6 is very good. It rates 90% of the machinability of the
    W-group water hardening low alloy steels rated 100% as a baseline.

    7. Applications of ASTM A681 L6 Tool Steel

    AISI
    L6 cold working tool steel is for general purpose tools and dies where
    greater toughness is required, but with some sacrifice of
    abrasion-resistance.

    Typically used below applications:

    • spindles,

    • forming rolls,

    • punches,

    • blanking and forming dies,

    • trimmer dies,

    • clutch parts,

    • pawls,

    • bearings,

    • chucks parts,

    • rollers,

    • knuckle pins,

    • clutch pins,

    • shear blades

  • Previous:
  • Next:



  • Tool SteelCarbon tool steel contains 0.7% of carbon and more. When entirely finished, this material is known for its hardness and strength. It is used in manufacturing tools. The carbon tool steel is valued for its low cost and relative hardness as opposed to the other tool materials. Depending on its chemical properties there exist carbon; alloy and high-speed steel.Carbon tool steel is used to manufacture jointer’s and bench tools operated under easy cutting conditions. It comes in handy in welding structures on the tools operated under the conditions that do not cause heating of the cutting edge. The main drawback of this steel is insufficient heat resistance. Alloy tool steel is used to make cutting tools (drills, milling cutters, tap-screws, tapping dies), and die tools which are more important. The letters and figures used in indicating the brand mean the following: figure -average carbon content in tenths of percent, X – chromium alloy, V – tungsten alloy, G – manganese alloy. The content of chromium, tungsten and manganese in such steel is set by GOST (state standard). High-speed steel is again for the most part used to make cutting tools. This kind of steel has high thermal resistance, is hard and durable. Besides, high-speed steel has increased resistance to plastic deformation. A cutting tool is operated under the conditions of extended contact and friction with the metal being treated. The configurations and properties of the cutting edge should remain unchanged in the process of operation. The material used in manufacturing cutting tools should be hard and durable – that is cable of retaining the cutting properties of the edge under friction.A reliable tool is first of all the high-quality material used by its manufacturer working in the field of commercial tool steel rolling.



    Jackson Hole Town Square Webcam

    Send your message to us:

    INQUIRY NOW
    • * CAPTCHA: Please select the Truck

    Related Products

    INQUIRY NOW
    • * CAPTCHA: Please select the Tree