Excellent quality for H13 Tool Steel | 1.2344 | X40CrMoV5-1 | SKD61 Hot Work Steel Factory for Johor

Excellent quality for
 H13 Tool Steel | 1.2344 | X40CrMoV5-1 | SKD61 Hot Work Steel Factory for Johor

Short Description:

H13 Tool Steel is chromium hot work tool steels which are widely used in hot and cold work tooling applications. H13 tool steel is classified as group H steels by the AISI classification system. This series of steels start from H1 to H19. AISI H-13 tool steel is characterized by: Good resistance to abrasion at both low and high temperatures High level of toughness and ductility Uniform and high level of machinability and polishability Good high-temperature strength and resistance to t...


  • Length: 3-5.8mm or Customization
  • Surface: black, peeled, or rough turned
  • Heat treatment: air-cooling, normalized, annealed, Q&T
  • Smelting process: EAF+LF+VD
  • Product Detail

    Product Tags

    We are proud of the high customer satisfaction and wide acceptance due to our persistent pursuit of high quality both on product and service for Excellent quality for H13 Tool Steel | 1.2344 | X40CrMoV5-1 | SKD61 Hot Work Steel Factory for Johor, We welcome customers, business associations and friends from all parts of the world to contact us and seek cooperation for mutual benefits.


    H13 Tool Steel is chromium hot work tool steels which are widely used in hot and cold work tooling applications. H13 tool steel is classified as group H steels by the AISI classification system. This series of steels start from H1 to H19.

    AISI H-13 tool steel is characterized by:

    • Good resistance to abrasion at both low and high temperatures

    • High level of toughness and ductility

    • Uniform and high level of machinability and polishability

    • Good high-temperature strength and resistance to thermal fatigue

    • Excellent through-hardening properties

    • Very limited distortion during hardening

    In
    steel H13, the molybdenum and vanadium act as strengthening agents. The
    chromium content assists die steel H-13 to resist softening when used
    at high temperatures. H-13 die steels offers an excellent combination of
    shock and abrasion resistance, and possesses good red hardness. It is
    capable of withstanding rapid cooling and resists premature heat
    checking. Tool Steel H13 has good machinability, good weldability, good
    ductility, and can be formed by conventional means.

    Due to H13
    tool steel excellent combination of high toughness and fatigue
    resistance, AISI H13 hot work tool steel is used more than any other
    tool steel in tooling applications.

    1. Common H13 Tool Steel Related Specifications

    Country USA German Japan
    Standard ASTM A681 DIN EN ISO 4957 JIS G4404
    Grades H13 1.2344/X40CrMoV5-1 SKD61

    2. H13 Tool Steel Chemical Composition

    ASTM A681 C Mn P S Si Cr V Mo
    H13 0.32 0.45 0.2 0.6 0.03 0.03 0.8 1.25 4.75 5.5 0.8 1.2 1.1 1.75
    DIN ISO 4957 C Mn P S Si Cr V Mo
    1.2344 /X40CrMoV5-1 0.35 0.42 0.25 0.5 0.03 0.02 0.8 1.2 4.8 5.5 0.85 1.15 1.1 1.5
    JIS G4404 C Mn P S Si Cr V Mo
    SKD61 0.35 0.42 0.25 0.5 0.03 0.02 0.8 1.2 4.8 5.5 0.8 1.15 1.0 1.5

    3. AISI H13 Steel Mechanical Properties

    Properties

    Metric Imperial
    Tensile strength, ultimate (@20°C/68°F, varies with heat treatment) 1200 – 1590 MPa 174000 – 231000 psi
    Tensile strength, yield (@20°C/68°F, varies with heat treatment) 1000 – 1380 MPa 145000 – 200000 psi
    Reduction of area (@20°C/68°F) 50.00% 50.00%
    Modulus of elasticity (@20°C/68°F) 215 GPa 31200 ksi
    Poisson’s ratio 0.27-0.30 0.27-0.30

    4. Forging of H13 Tool Steel
    Heating for forging must be done slowly and uniformly. Soak through at
    1900°-2000°F and reheat as often as necessary, stopping work when the
    temperature drops below 1650°F. After forging, cool slowly in lime,
    mica, dry ashes or furnace. H-13 should always be annealed after
    forging.

    5. Heat Treatment for H13 Tool Steels

    • Annealing

    Heat
    slowly to 1550°-1650°F, hold until entire mass is heated through, and
    cool slowly in the furnace (40F per hour) to about 1000°F, after which
    cooling rate may be increased. Suitable precautions must be taken to
    prevent excessive carburization or decarburization.

    • Stress Relieving

    When
    desirable to relieve the strains of machining, heat slowly to
    1050°-1250°F, allow to equalize, and then cool in still air (Strain
    Relieving). Â

    • Preheat Prior to Hardening

    Warm slightly before charging into the preheat furnace, which should be operating at 1400°-1500°F.

    • Hardening

    H13
    tool steel is a steel having very high hardenability and should be
    hardened by cooling in still air. The use of a salt bath or controlled
    atmosphere furnace is desirable to minimize decarburization, and if not
    available, pack hardening in spent pitch coke is suggested. The
    temperature employed is usually 1800°-1850°F, depending on size section.

    • Quenching

    Quench
    in still air or dry air blast. If complicated forms are to be hardened,
    an interrupted oil quench can be used. Quench part in oil and remove
    from bath when it just loses its color (1000°-1100°F). Finish cooling to
    below 150°-125°F in air, then temper immediately.

    • Tempering

    Tempering
    practice may vary with size and application, but is usually performed
    in the range of maximum secondary hardness or higher. Double tempering
    is recommended. The results below is H13 that was air quenched from
    1800°F and tempered for 4 hours at various temperatures. The results may
    be used as a guide, keeping in mind that parts of heavy section or mass
    may be several points lower in hardness.

    6. Application of AISI H13 Tool Steel

    • As Tools for Extrusion

    Part Aluminium, mag­nesium alloys, HRC Copper al­loys HRC Stainless steel HRC
    Dies, Backers, die-holders, liners, dummy blocks, stems 44-50 43-47 45-50
    41-50 40-48 40-48

    Austenitizing temperature

    1,870-1,885°F 1,900-1,920°F
    (1,020-1,030°C) (1,040-1,050°C)
    • As Plastic Molding Tool Steel

    Part Austenitizing temp. HRC
    Injection molds Compression/ transfer molds 1,870-1,885°F (1,020-1,030°C) 50-52
    Tempering 480°F (250°C)
    • Other Applications

    Applications Austenitizing temp HRC
    Severe cold punching, scrap shears 1,870-1,885°F 50-52
    (1,020-1,030°C)
    Tempering 480°F (250°C)
    Hot shearing 1,870-1,885°F
    (1,020-1,030°C) 50-52
    Tempering 480°F (250°C) or
    1,070-1,110°F 45-50
    (575-600°C)
    Shrink rings (e.g. for cemented carbide dies) 1,870-1,885°F 45-50
    (1,020-1,030°C)
    Tempering 1,070-1,110°F
    (575–600°C)
    Wear-resisting parts 1,870-1,885°F Core
    50-52
    Surface
    ~1000HV1
    (1,020-1,030°C)
    Tempering 1,070°F (575°C)
    nitrided

     

    If
    there are any queries about AISI H13 tool steel for hot working
    applications, please feel free to leave a comment below. And welcome
    enquiry of AISI H13 tool steel, we are professional and reliable
    supplier  for prime H13 tool steel materials.


  • Previous:
  • Next:



  • Jessica presents two 3d printed metal samples made with EOS 3d printers. A Formula 1 race car custom heat exchanger and artificial joints.
    Part 1. of EOS 3d printing @ MD&M 2013. Stay tuned, 3d printing and more coming soon.

    Be sure to visit ElectricTV on the web @ http://www.electrictv.com/



    Check us out at http://www.tutorvista.com/content/physics/physics-iii/solids-and-fluids/amorphous-solids.php

    Crystalline and Amorphous Solids

    The process of forming a crystalline structure from a fluid or from materials dissolved in the fluid is often referred to as crystallization. In the old example referenced by the root meaning of the word crystal, water being cooled undergoes a phase change from liquid to solid beginning with small ice crystals that grow until they fuse, forming a polycrystalline structure. The physical properties of the ice depend on the size and arrangement of the individual crystals, or grains, and the same may be said of metals solidifying from a molten state.
    Which crystal structure the fluid will form depends on the chemistry of the fluid, the conditions under which it is being solidified, and also on the ambient pressure. While the cooling process usually results in the generation of a crystalline material, under certain conditions, the fluid may be frozen in a noncrystalline state. In most cases, this involves cooling the fluid so rapidly that atoms cannot travel to their lattice sites before they lose mobility. A noncrystalline material, which has no long-range order, is called an amorphous, vitreous, or glassy material. It is also often referred to as an amorphous solid, although there are distinct differences between crystalline solids and amorphous solids: most notably, the process of forming a glass does not release the latent heat of fusion.
    Crystalline structures occur in all classes of materials, with all types of chemical bonds. Almost all metal exists in a polycrystalline state; amorphous or single-crystal metals must be produced synthetically, often with great difficulty. Ionically bonded crystals can form upon solidification of salts, either from a molten fluid or upon crystallization from a solution. Covalently bonded crystals are also very common, notable examples being diamond, silica, and graphite. Polymer materials generally will form crystalline regions, but the lengths of the molecules usually prevent complete crystallization. Weak van der Waals forces can also play a role in a crystal structure; for example, this type of bonding loosely holds together the hexagonal-patterned sheets in graphite.
    Most crystalline materials have a variety of crystallographic defects. The types and structures of these defects can contain a profound effect on the properties of the materials.
    An “amorphous solid” is a solid in which there is no long-range order of the positions of the atoms. (Solids in which there is long-range atomic order are called crystallines or morphous). Most classes of solid materials can be found or prepared in an amorphous form. For instance, common window glass is an amorphous solid, many polymers (such as polystyrene) are amorphous, and even foods such as cotton candy are amorphous solids.
    In principle, given a sufficiently high cooling rate, any liquid can be made into an amorphous solid. Cooling reduces molecular mobility. If the cooling rate is faster than the rate at which molecules can organize into a more thermodynamically favorable crystalline state, then an amorphous solid will be formed. Because of entropy considerations, many polymers can be made amorphous solids by cooling even at slow rates. In contrast, if molecules have sufficient time to organize into a structure with two- or three-dimensional order, then a crystalline (or semi-crystalline) solid will be formed. Water is one example. Because of its small molecular size and ability to quickly rearrange, it cannot be made amorphous without resorting to specialized hyperquenching techniques.
    Amorphous materials can also be produced by additives which interfere with the ability of the primary constituent to crystallize. For example, addition of soda to silicon dioxide results in window glass, and the addition of glycols to water results in a vitrified solid.
    Some materials, such as metals, are difficult to prepare in an amorphous state. Unless a material has a high melting temperature (as ceramics do) or a low crystallization energy (as polymers tend to), cooling must be done extremely rapidly. As the cooling is performed, the material changes from a supercooled liquid, with properties one would expect from a liquid state material, to a solid. The temperature at which this transition occurs is called the glass transition temperature or Tg.

    Please like our facebook page
    http://www.facebook.com/tutorvista Follow us at: https://plus.google.com/+tutorvista/

    Send your message to us:

    INQUIRY NOW
    • * CAPTCHA: Please select the Plane

    Related Products

    INQUIRY NOW
    • * CAPTCHA: Please select the Plane