15 Years Manufacturer AISI 1053 Carbon Steel (UNS G10530) in Uzbekistan

15 Years Manufacturer
 AISI 1053 Carbon Steel (UNS G10530) in Uzbekistan

Short Description:

Chemical Composition The chemical composition of AISI 1053 carbon steel is outlined in the following table. Element Content (%) Iron, Fe 98.36-98.82 Manganese, Mn 0.7-1.0 Carbon, C 0.48-0.55 Sulfur, S 0.05 Phosphorous, P 0.04 Physical Properties The physical properties of AISI 1053 carbon steel are tabulated below. Properties Metric Imperial Density 7.7-8.03 g/cm3 0.278-0.290 l...


  • Length: 3-5.8mm or Customization
  • Surface: black, peeled, or rough turned
  • Heat treatment: air-cooling, normalized, annealed, Q&T
  • Smelting process: EAF+LF+VD
  • Product Detail

    Product Tags

    Our products are widely recognized and trusted by users and can meet continuously changing economic and social needs of 15 Years Manufacturer AISI 1053 Carbon Steel (UNS G10530) in Uzbekistan, winning customers' trust is the gold key to our success! If you are interested in our products, please feel free to visit our web site or contact us.


    Chemical Composition

    The chemical composition of AISI 1053 carbon steel is outlined in the following table.

    Element Content (%)
    Iron, Fe 98.36-98.82
    Manganese, Mn 0.7-1.0
    Carbon, C 0.48-0.55
    Sulfur, S 0.05
    Phosphorous, P 0.04

    Physical Properties

    The physical properties of AISI 1053 carbon steel are tabulated below.

    Properties Metric Imperial
    Density 7.7-8.03 g/cm3 0.278-0.290 lb/in3

    Mechanical Properties

    The following table shows mechanical properties of AISI 1053 carbon steel.

    Properties Metric Imperial
    Elastic modulus 190-210 GPa 29700-30458 ksi
    Poisson’s ratio 0.27-0.30 0.27-0.30

  • Previous:
  • Next:



  • Excitonic States in Crystalline Organic Semiconductors:
    A Condensed Matter Approach

    GRADUATE COLLEGE
    DEFENSE

    Lane W. Manning

    Advisor: Dr. Madalina Furis

    Doctor of Philosophy

    Materials Science

    With increased interest in organic semiconducting systems for many varied research and commercial applications, crystalline thin films of small molecules present an intriguing system for both fundamental and applied studies of electronic properties and exchange interactions in the larger field of organic electronics. Their optical, transport and magnetic properties belong to an intermediate regime where well-established models fail to fully describe the electronic behavior and do not accurately predict the experimental observations.

    With this in mind, the nature of the dynamics of diffusion and delocalization of excitons (or electron-hole pairs) becomes a necessity for understanding and eventually controlling the behavior of these materials in organic electronic applications. Furthermore, the processing method, purity, and crystalline quality of the films themselves can also greatly impact exciton behavior. Novel solution-processing deposition techniques in tandem with chemical synthesis design of small molecule soluble derivatives represent a viable avenue for exploring these excitons using organic analogues of semiconductor alloyed systems, where excitonic properties could be tunable through alloy concentration.

    In this work, a new condensed matter approach to the study of excitons based crystalline thin films of the organic molecule phthalocyanine (Pc) is introduced. The premise is inspired by a wealth of studies in inorganic semiconductor ternary alloys (such as AlGaN, InGaN, SiGe) where tuning compositional disorder can result in exciton localization by alloy potential fluctuations. Comprehensive absorption, luminescence, linear dichroism and electron radiative lifetime studies were performed on both pure and alloy samples of metal-free octabutoxy-phthalocyanine (H2OBPc) and transition metal octabutoxy-phthalocyanines (MOBPc), where M = Mn, Co, Ni, and Cu. Varying the ratios of the metal to metal-free OBPcs in all of these studies, as well as looking across a temperature range from 4 Kelvin up to room temperature is essential for quantifying the exciton wavefunction delocalization in crystalline thin films. Furthermore, a comparative study is performed across organic aromatic ringed molecules of different sizes in the same family: phthalocyanine, naphthalocyanine (NOBPc) and tetra-phenyl porphyrin (TPP). In an analogy to nanocrystals and their size effects, variations in π-conjugated ring sizes imply an altering in the number of delocalized electrons, impacting the wavefunction overlap between π-π orbitals along the perpendicular axis of neighboring molecules. Finally, complementary measurements that assess crystallinity of the in-house deposited thin films, including individual grain absorption, small angle x-ray scattering images, polarized microscope images and a new unique LD microscopy dual imagingluminescence technique are also discussed.



    “FD Grip” The No.1 earthquake-resistant rebar coupler in Japan, the maximum seismic country,
    for above 30 years.
    TEL:+sixty two-21-6471-2565 http://www.fujibolt.com/index.html

    Send your message to us:

    INQUIRY NOW
    • * CAPTCHA: Please select the Key

    Related Products

    INQUIRY NOW
    • * CAPTCHA: Please select the Truck